Using Artificial Neural Networks for Recognition of Control Chart Pattern
نویسندگان
چکیده
منابع مشابه
Control Chart Pattern Recognition Using Artificial Neural Networks
Precise and fast control chart pattern (CCP) recognition is important for monitoring process environments to achieve appropriate control and to produce high quality products. CCPs can exhibit six types of pattern: normal, cyclic, increasing trend, decreasing trend, upward shift and downward shift. Except for normal patterns, all other patterns indicate that the process being monitored is not fu...
متن کاملControl Chart Pattern Recognition Using Wavelet Based Neural Networks
Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characterist...
متن کاملPattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملArtificial neural networks for pattern recognition
This tutorial article deals with the basics of artificial neural networks (ANN) and their applications in pattern recognition. ANN can be viewed as computing models inspired by the structure and function of the biological neural network. These models are expected to deal with problem solving in a manner different from conventional computing. A distinction is made between pattern and data to emp...
متن کاملControl chart pattern recognition using K-MICA clustering and neural networks.
Automatic recognition of abnormal patterns in control charts has seen increasing demands nowadays in manufacturing processes. This paper presents a novel hybrid intelligent method (HIM) for recognition of the common types of control chart pattern (CCP). The proposed method includes two main modules: a clustering module and a classifier module. In the clustering module, the input data is first c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2015
ISSN: 0975-8887
DOI: 10.5120/20319-2388